Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors

نویسندگان

  • Jan Kotera
  • Filip Sroubek
  • Peyman Milanfar
چکیده

Single image blind deconvolution aims to estimate the unknown blur from a single observed blurred image and recover the original sharp image. Such task is severely ill-posed and typical approaches involve some heuristic or other steps without clear mathematical explanation to arrive at an acceptable solution. We show that a straightforward maximum a posteriory estimation combined with very sparse priors and an efficient numerical method can produce results, which compete with much more complicated state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind deconvolution of images with model discrepancies using maximum a posteriori estimation with heavy-tailed priors

Single image blind deconvolution aims to estimate the unknown blur from a single observed blurred image and recover the original sharp image. Such task is severely ill-posed and typical approaches involve some heuristic or other steps without clear mathematical explanation to arrive at an acceptable solution. We show that a straightforward maximum a posteriori estimation incorporating sparse pr...

متن کامل

A Fast GEM Algorithm for Bayesian Wavelet-Based Image Restoration Using a Class of Heavy-Tailed Priors

The paper introduces modelling and optimization contributions on a class of Bayesian wavelet-based image deconvolution problems. Main assumptions of this class are: 1) space-invariant blur and additive white Gaussian noise; 2) prior given by a linear (finite of infinite) decomposition of Gaussian densities. Many heavy-tailed priors on wavelet coefficients of natural images admit this decomposit...

متن کامل

Blind Deconvolution with Non-local Sparsity Reweighting

Blind deconvolution has made significant progress in the past decade. Most successful algorithms are classified either as Variational or Maximum a-Posteriori (MAP ). In spite of the superior theoretical justification of variational techniques, carefully constructed MAP algorithms have proven equally effective in practice. In this paper, we show that all successful MAP and variational algorithms...

متن کامل

Marginal maximum a posteriori estimation using Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods, while facilitating the solution of many complex problems in Bayesian inference, are not currently well adapted to the problem of marginal maximum a posteriori (MMAP) estimation, especially when the number of parameters is large. We present here a simple and novel MCMC strategy, called State-Augmentation for Marginal Estimation (SAME), which leads to MMAP...

متن کامل

Fast GEM wavelet-based image deconvolution algorithm

The paper proposes a new wavelet-based Bayesian approach to image deconvolution, under the space-invariant blur and additive white Gaussian noise assumptions. Image deconvolution exploits the well known sparsity of the wavelet coefficients, described by heavy-tailed priors. The present approach admits any prior given by a linear (finite of infinite) combination of Gaussian densities. To compute...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013